Solar panels embedded in clothes charge a mobile phone

Clothing embedded with tiny solar cells the size of a flea will allow wearers to generate electricity on the move and charge items like mobile phones and smartwatches.
Read more at:
The cells are encapsulated in a resin which allows the textile fabric to be washed and worn like any other form of clothing. Measuring only three millimetres in length and 1.5 millimetres in width, the cells are almost invisible to the naked eye and cannot be felt by the wearer. For all intents and purposes, garments appear exactly the same as any other form of clothing despite having the capability to generate electricity

Pindrop brings voice authentication to IoT devices, intelligent assistants, and connected cars

Forget passwords and PIN codes — Pindrop wants to make our lives more secure with voice biometrics.

From VentureBeat Article:

Pindrop brings voice authentication to IoT devices, intelligent assistants, and connected cars

The Atlanta, Georgia-based company today announced Voice Identity Platform, a speech authentication solution for IoT, voice assistants, smart homes and offices, and connected cars.

Its platform-agnostic tech is akin to Google’s Voice Match in Google Assistant, which can differentiate among the unique voice signatures of up to 10 Google Home users, and Amazon’s voice profiles in Alexa.

Pindrop’s patented Pindrop Protect technology takes into account factors such as location, behavior, device type, audio, voice, and time of day to confirm identity. By scoring each voice interaction based on AI-driven anomaly detection and using voice printing to correlate matches with what Pindrop claims is one of the world’s largest audio databases of its kind, the company contends it is able to lower handle times by up to 60 seconds.

Arrow Intelligent Systems sponsoring the IoT Thames Valley Meetup

Thank you to Arrow Intelligent Systems @ArrowISpossible who are sponsoring the Internet of Things Thames Valley Meetup #IoT @tv_iot at Green Park Conference Centre, Reading on 26th September, 2018.

At Arrow Intelligent Systems (AIS), your mission is our mission. From design engineering services, global marketing and integration, global logistics, and business solutions, our dedicated team of experts is bringing it all together to help you deliver the latest technologies to market – quickly and efficiently.

IoT Scotland Network based on LoRa

Scotland is to get a new  Internet of Things network. The network, called IoT Scotland, will allow the collection of data from smart devices through a wireless sensor network  based on LoRa wireless technology.

The £6m, three-year project has been funded with investment from both the public and private sectors.

Initially, the network will cover Scotland’s seven cities, Glasgow, Inverness, Edinburgh, Aberdeen, Dundee, Perth, and Stirling, with the aim of expanding it throughout Scotland.

https://www.holyrood.com/articles/news/scotland-get-%E2%80%98most-advanced%E2%80%99-internet-things-network-uk

Wi-Fi Alliance introduces EasyMesh

Wi-Fi CERTIFIED EasyMesh™ brings a standards-based approach to Wi-Fi networks that utilize multiple access points (APs), combining the benefits of easy to use, self-adapting Wi-Fi with greater flexibility in device choice that comes with interoperable Wi-Fi CERTIFIED™ devices. Wi-Fi EasyMesh™ networks employ multiple access points that work together to form a unified network that provides smart, efficient Wi-Fi throughout the home and outdoor spaces.

For more information see:

WiFi EasyMesh

 

How cave-dwelling fish could help stop an #IoT catastrophe

From an article by Colm Gorey, Silicon Republic:

How cave-dwelling fish could help stop an IoT catastrophe

A peculiar trait of a cave-dwelling fish has inspired a device that could help us avoid disruption caused by a saturation of IoT signals in one place.

As we plough ahead towards a future where many city spaces are covered in connected devices as part of the internet of things (IoT), there are fears that we could reach the point of a spectral bandwidth crunch.

So, efforts to find ways for devices to avoid being jammed by a neighbouring signal have led researchers to some strange places, the latest of which happens to be home to a species of cave-dwelling fish.

In a paper published to the journal Optics Express, The Optical Society revealed how the species called Eigenmannia live in complete darkness.

In order to survive, they emit an electric field to communicate with other fish and to sense the surrounding environment. When two fish emit this field near each other, it has the potential to interfere with and jam the signal, which would obviously be bad for the fish.

However, thanks to a unique neural algorithm, the fish can adjust their electric communication signals to prevent this interference. For us humans, this same ability can be harnessed to create a light-based jamming avoidance response (JAR) device.

Google takes Android Things out of beta

After a developer preview with more than 100,000 SDK downloads, Google has taken its Android Things managed IoT operating system out of beta and made it available to all developers.

Android Things is Google’s managed OS that enables users to build and maintain IoT devices at scale. It provides a robust platform that does the heavy lifting with certified hardware, developer APIs and secure managed software updates using Google’s back-end infrastructure.

See full article at M2M Zone here:

Google takes Android Things out of beta

 

 

New Wearable Sensor May Soon Replace Blood Tests

Researchers have developed a new stretchable wearable sensor that can measure pH levels from a patient’s sweat—potentially replacing blood tests to measure glucose, sodium, and potassium.

The potential data that can be captured from sweat is equal to that of a blood test. The traditional check for chronic diseases is analyzing a blood sample. However, it is possible to use sweat and tears for the same tests as they contain similar analytes (biomarkers). A research team from the University Glasgow has developed a stretchable sensor that can measure sweat, using it to perform the same tests that would require blood.

The UK-based Bendable Electronics and Sensing Technologies (BEST) group works out of the University of Glasgow. It has developed a new sweat-based, non-invasive sensor directed at monitoring diabetes. The article, entitled “Stretchable wireless system for sweat pH monitoring,”was recently published in the journal Biosensors and Bioelectronics. This work was conducted by Wenting Dang, Libu Manjakkal, William Taube Navaraj, and Ravinder Dahiya from the University of Glasgow; Leandro Lorenzelli from the Fondazione Bruno Kessler; and Vincenzo Vinciguerra from STMicroelectronics. The sensor was developed via the EU-funded project CONTEST.

The wearable uses a pH sensor made from graphite-polyurethane composite, stretchable radio-frequency-identification (RFID) antenna, and a flexible data transmission printed circuit board (PCB). The sensor area is 1 cm2and can stretch up to 53% in length due to a pair of serpentine-shaped interconnecting pieces.

See full MachineDesign article here:

New Wearable Sensor May Soon Replace Blood Tests

Arm pitches tamper-resistant Cortex-M35-P CPU cores

Arm has released a new processor core design for Cortex-M-powered system-on-chips that will try to stop physical tampering and side-channel attacks by hackers.

The microcontroller-grade Cortex M35-P CPU cores are aimed at embedded IoT devices that operate in public or areas where there is a risk someone will either crack open the device or get close enough to perform a proximity-based attack. Think things like smart meters or connected street lights in a major city.

For more information see The Register article:

Arm pitches tamper-resistant Cortex-M35-P CPU cores

 

British Smart Meters cost £28 million EACH

“That’s right.  Britain’s smart meters are now officially the most expensive smart meters in the world.” Full article by Nick Hunn can be found here:

British Smart Meters cost £28 million EACH

For those of you who have not been following the story, let me provide a brief précis.  Back in 2010 the Government mandated that every home in Britain should have a smart gas and a smart electricity meter by 2020.   Instead of using off the shelf smart meters, they decided to design their own.  DECC worked with some vested industry interests to do a classic Government IT committee job, producing the most complex smart meter specification the world has seen.  That design was called SMETS1 – short for Smart Metering Equipment Technical Specification.  Not only was it the most expensive, but it was also insecure.  When GCHQ looked at it and considered the potential implications of connecting it to our national infrastructure they demanded a redesign, resulting in the SMETS2 specification.  SMETS1 meters look as if they won’t work with the SMETS2 software infrastructure, so any SMETS1 meters already installed will probably need to be replaced.  Throughout this fiasco, the Government has not relaxed its requirements for every home to have a smart meter fitted by 2020, which means fitting around 50 million new meters.

Which brings us to today.  The SMETS2 meters are enormously complex and are pushing the limits of the industry to design them.  With the 2020 deadline barely 30 months away you’d hope that the bulk of them would be fitted by now.  But I’ve just been talking to contacts in the industry who have told me that currently there are only around 80 SMETS2 meters fitted.  Do the sums based on what has been spent so far on the GB smart Metering programme and you’ll find that it equates to around £28 million for each of these meters.  It is an obscene example of a Government IT project going wrong.  But it gets worse.  Not only will the overall project cost consumers around £12 billion, it has the potential to destroy Britain’s leading position in the development of the Internet of Things.